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ABSTRACT

The novel working principle enables spiking cameras to cap-
ture high-speed moving objects. However, the applications
of spiking cameras can be affected by many factors, such as
brightness intensity, detectable distance, and the maximum
speed of moving targets. Improper settings such as weak am-
bient brightness and too short object-camera distance, will
lead to failure in the application of such cameras. To address
the issue, this paper proposes a modeling algorithm that stud-
ies the detection capability of spiking cameras. The algorithm
deduces the maximum detectable speed of spiking cameras
corresponding to different scenario settings (e.g., brightness
intensity, camera lens, and object-camera distance) based on
the basic technical parameters of cameras (e.g., pixel size,
spatial and temporal resolution). Thereby, the proper cam-
era settings for various applications can be determined. Ex-
tensive experiments verify the effectiveness of the modeling
algorithm. To our best knowledge, it is the first work to inves-
tigate the detection capability of spiking cameras.

Index Terms— Neuromorphic Vision Sensing, Spike
Signal Processing, Emerging Multimedia Applications

1. INTRODUCTION

Conventional cameras work on the frame-based imaging prin-
ciple, where each frame represents the accumulation of lumi-
nance over an exposure time. Constrained by a fixed exposure
time, conventional cameras struggle in high-speed scenarios
[1, 2, 3]. Recent years have witnessed the prosperous devel-
opment of neuromorphic cameras, which are widely used in a
variety of applications such as detection [4, 5], tracking [6, 7],
recognition [8, 9, 10], optical flow estimation [11, 12], and
reconstruction [13, 14]. According to the working principle,
neuromorphic cameras can be roughly categorized as event
cameras (following the differential principle) [15, 16, 17] and
spiking cameras (following the integral principle) [18, 19]. In
event cameras, each pixel encodes the change of luminance to
asynchronous events. As a comparison, each pixel of spiking
cameras keeps recording luminance and emits a spike once
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Fig. 1. The correlation between spike signals and scene radi-
ance is modelled, thus can deduce the detection capability of
spiking cameras under different scenarios and further provide
application guidance. E.g., a high-speed train is successfully
captured with the guidance of the modeling algorithm.

the accumulated intensity reaches a threshold. The distinc-
tive imaging principle and data representation allow neuro-
morphic cameras to mitigate the limitations imposed by fixed
exposure time, thereby increasing their temporal resolution
and potential for capturing high-speed objects [20].

Existing neuromorphic cameras are implemented based
on CMOS technology. The photo-electric conversion time
of each pixel bounds the maximum sampling frequency of
spike signals and the capability of detecting high-speed ob-
jects [21]. Improper settings including too-short detection
distance, very long focal length of lens, and weak brightness,
will lead to the failure in practical applications of neuromor-
phic cameras. For example, weak brightness degrades the
real-time sampling frequency of neuromorphic cameras, in-
troducing challenges in detecting high-speed moving objects
[22]. However, manuals of neuromorphic cameras only pro-
vide basic technical parameters, such as temporal resolution,
dynamic range, and supply voltage. Although those param-
eters can reflect the property of a camera, it is still difficult
for users to get proper configurations for different application
scenarios. Thus, an algorithm that guides users to determine
the proper settings of neuromorphic cameras for different sce-
narios are appealing for investigating.

This paper proposes an early work that studies the detec-
tion capability of high-speed spiking cameras. As illustrated
in Fig. 1, we derive the correlation between spike signals and
scene radiance. Based on it, the applicable settings (includ-
ing brightness intensity, configuration of camera lens, max-
imum speed of moving targets, and object-camera distance)
of spiking cameras can be determined, ensuring them to work
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Fig. 2. The working principle of spiking cameras.

properly under different scenes. We build an experimental
system to validate the modeling algorithm. Moreover, we
also perform real-world application cases such as capturing
high-speed travelling trains using a spiking camera. Exten-
sive experiments show that, our algorithm provides effective
and convenient guidance for spiking camera applications.

2. WORKING PRINCIPLE OF SPIKING CAMERAS

We formulate the modeling algorithm based on the spiking
camera adopted in [18]. Fig. 2 (a) shows that the pixel of
the spiking camera comprises three parts: spike trigger, re-
set and readout circuits. Fig. 2 (b) shows that the working
principle of the camera contains three states: integration, re-
set, and readout. In the integration state, the photo-diode in
each pixel converts the photo-current ℓph into the voltage on
capacitance Cpd. As the photo-diode continues to generate
electric charges, the voltage on capacitance will drop. When
its value reaches the threshold Vref , the comparator flips over.
Once the reset circuit detects the flip signal, the pixel enters
the reset state. The reset circuit then generates a 1-bit signal
to reset the photo-diode. After a very short time interval, a
new integration stage is resumed. Meanwhile, the 1-bit signal
is stored in the readout circuit. In the readout state, the signal
stored in the readout circuit is transmitted to the data bus by a
readout clock (40KHz). Afterwards, the readout circuit clears
its storage. According to the above analysis and Fig. 2, the
condition that a pixel emits a spike can be formulated as,

1

Cpd

∫
ℓphdt ≥ (Vdd − Vref ) . (1)

3. MODELING ALGORITHM

The modeling algorithm aims to determine whether the cam-
era can be applied in a specific scenario or to provide proper
applicable settings for an application. To this purpose, we de-
rive the relation between the detectable speed v, brightness

intensity I , detection distance D, and focal length of lens F ,
as shown in Fig. 1. The derivation is divided into the three
steps: 1) ⟨I⇒ fr⟩ Derive the relation of I with the real-time
spike firing rate fr of spiking cameras; 2) ⟨D&F ⇒ Amin⟩
Derive the relation among D, F , and minimum resolvable
distance Amin; 3) ⟨I&D&F ⇒ v⟩ Based on the constraint of
Amin and fr to v, establish the relation of I , D, and F to v.
• ⟨I ⇒ fr⟩ Each pixel on the sensing chip keeps recording
the brightness from target scenes. In spiking cameras, a linear
relation λ is observed between brightness intensity I and the
photo-current ℓph of pixel photodiodes. According to Eq. 1,
the condition that a pixel emits a spike can be formulated as,∫ t+∆t

t

λIdt ≥ Cpd(Vdd − Vref ) , (2)

where ∆t is the integrating time of a pixel. As the readout
of spike signals is constrained by the readout clock, ∆t is
equal to nTr, where Tr =

1
40K s=25µs. Tr is defined as the

temporal resolution of spiking cameras. According to Eq. 2,
given the brightness intensity I , the minimal integrating time
that is necessary for emitting a spike can be calculated as n=
⌈Cpd(Vdd−Vref )

λITr
⌉. Thus, the real-time spike firing rate fr can

be calculated as follows:

fr =
1

∆t
=

1

nTr
=

1

⌈Cpd(Vdd−Vref )
λITr

⌉Tr

. (3)

According to the above equation, lower brightness leads
to the decrease on spike firing rate. As shown in Fig. 2 (b), it
can be observed that, when the I changes from I1 to I2, the fr
decreases from 1

Tr
to 1

4Tr
. Note that the maximum spike firing

rate fmax is 1
Tr

. Therefore, based on the Eq. 2, we can derive
the saturated state of brightness intensity Is as expressed in
Eq. 4. The value of λ can be experimentally determined as
well. When the I exceeds Is, the fr reaches the maximum
and no longer changes with the I .

Is =
Cpd(Vdd − Vref )

λTr
. (4)

• ⟨D&F ⇒Amin⟩ As shown in Fig. 1, a target at distance
D moves at a speed v, and projects an inverted image on the
sensing chip through lens. The projected pixels keep record-
ing the brightness independently and emit a spike once the
voltage reaches a threshold. Suppose that the lengths of the
target and its image are A and H , respectively, the relation
between them can be represented as follows according to the
law of convex lens imaging:

F

H
=

D

A
. (5)

Based on Eq. 5 and given the pixel size a of the sensor,
the minimum resolvable distance Amin of spiking cameras at
the distance D = D0 can be calculated as,

Amin =
D0 · a
F

. (6)
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Table 1. Basic technical parameters of the spiking sensor.
Parameter Value

Array Size (W×H) 400×250

Temporal Resolution (Tr) 25µs

Pixel Size (a×a) 20µm×20µm

Supply Voltage (Vdd) 3V

Reference Voltage of Comparator (Vref ) 1V

Capacitance of Photodiode (Cpd) 15fF

• ⟨I&D&F ⇒v⟩ As shown in Eq. 6, each pixel samples the
brightness of an Amin×Amin area (hereinafter, called the A2

area) at the distance D0 to the lens. To ensure that sufficient
information is captured from a high-speed continuous motion,
a pixel needs to emit at least one spike that sampled from an
A2 area (i.e., the brightness of an A2 area needs at least one
spike for information representation). According to Eq. 3,
when the brightness intensity I is lower than Is, the real-time
spike firing rate decreases from 1

Tr
to 1

nTr
. Hence, we can

derive the upper bound of the detectable speed of targets as,

v ≤ Amin

nTr
=

Amin

⌈ξI−1⌉Tr
, (let ξ =

Cpd(Vdd − Vref )

λTr
) . (7)

Combining Eq. 6 with Eq. 7, the detectable speed of mov-
ing targets can be formulated as,

v ≤ aD

F ⌈ξI−1⌉Tr
, (8)

where a and Tr are the basic technical parameters referred
from Tab. 1, F is related to the lens of spiking cameras, I and
D are related to application scenes. In this way, the applicable
settings of spiking cameras can be determined.

4. EXPERIMENTS

• Validation Experiments: We conduct two group of exper-
iments, i.e., rotation and translation experiment, to verify the
proposed modeling algorithm. The spiking camera adopted
in experiments is shown in Fig. 3 (a). This camera has the
temporal resolution of 50µs, and the other technical param-
eters are same as Tab. 1. The rotation experiment aims to
verify the modeling result through rotation motion, and we
build an experimental system (Fig. 3 (b)) where the applicable
settings can be manually configured. For instance, the bright-
ness intensity can be adjusted by curtains, the rotating speed
of fan blades can be modulated by the speed controller, and
the object-camera distance can be measured precisely by the
ruler. In rotation experiments, we set six different experimen-
tal configurations (e.g., D, I, andF = 8mm), as recorded in
Tab. 2. According to the technical parameters and experimen-
tal configurations, the maximum detectable speed (denoted as
Vm) in each set of experiment can be calculated by Eq. 8. As
a contrast, we set the rotating speed of fan blades as Vm and
(1.2×∼1.5×)Vm, respectively. Afterwards, we use the spik-
ing camera to record high-speed rotating motions. Given that

Table 2. The configuration of rotation experiments (Fig. 3
(c), and the evaluation results of the reconstructed images by
TFI corresponding to each set of experiment.

Experimental Configurations Evaluation Results
No. D(m) I(lx) v(m/s) TDE↑ BIBQ↓
1-1

0.5

2000
4.2 (Vm) 10.03 63.78

1-2 6.3 (1.5Vm) 9.72 69.73

2-1
6000

8.3 (Vm) 9.65 29.36

2-2 11.6 (1.4Vm) 9.43 32.33

3-1
12000

25 (Vm) 9.34 12.59

3-2 30 (1.2Vm) 9.07 16.48

4-1

1.0

2000
8.3 (Vm) 10.19 60.74

4-2 12.5 (1.5Vm) 9.82 65.29

5-1
6000

25 (Vm) 9.71 18.12

5-2 32.5 (1.3Vm) 9.52 22.54

6-1
12000

50 (Vm) 11.12 14.79

6-2 60 (1.2Vm) 10.62 20.62

the camera captures sufficient information about the moving
targets with the speed v ≤ Vm, the spike-based algorithms
can reconstruct images from raw data. If the moving speed
exceeds Vm, the reconstructed images will suffer from infor-
mation loss (e.g., motion blur) as shown in Fig. 3 (c). Note
that the rotating radius of the fan (denoted as R) is 15 cm, and
rotating speed (denoted as Vrot rps (round per second)) can
be manually set. Then, the speed of chars on fan blades can
be calculated as: v = 2πRVrot/60.

In the translation experiment, we perform real-world
cases. Specifically, we use the spiking camera to record a
train (type CR400BF) passing through the platform on main-
line at a high speed (350 km/h). Before the experiment, to
ensure that the spiking camera can record the high-speed mo-
tion, precise applicable settings should be determined. The
experiment is conducted on a sunny noon (bright intensity is
saturated), thereby ensuring that spiking camera can work at
the maximum spike firing rate. Given that the v of the train is
350 km/h, and the F of lens is 16 mm, the distance between
the train and lens should be set to at least 3.9 m according
to Eq. 8. Based on above calculation results, we position
the spiking camera on the platform approximately 4 m away
from the train. The camera is turned on to record data while
the train is passing through. We also capture high-speed cars
adopting the similar procedure. The spike data and the corre-
sponding reconstructed images are shown in Fig. 3(d).
• Experimental Results: We adopt the Texture From Inter-
spike-interval (TFI) method [19] to reconstruct images from
raw spikes. This method only takes the inter-spike interval
to reconstruct gray-scale images, and does not introduce any
optimal techniques and referenced information. Thus, the
quality of the images reconstructed by TFI can reflect the
information carried by raw spikes. To quantitatively evaluate
the reconstructed images, we employ the Two-Dimensional
Entropy (TDE) [23] and Blind Image Quality Index (BIQI)
[24] for metrics. The larger indicator of TDE represents
better, while contrary for BIQI. The evaluation results sum-
marized in Tab. 2 show that, the images reconstructed from
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Fig. 3. Rotation and translation experiments verify the modeling algorithm. We build an experimental system to perform
rotation experiments, and record high-speed travelling train and car under the guidance of the calculated applicable settings.

the scenes with v=Vm have better quality than those from the
scenes with v > Vm. Fig. 3 (c) shows that, the reconstructed
images of chars in the scenes with v > Vm are severely
blurred. In addition, Fig. 3 (d) shows that, the high-speed
train and car are successfully recorded under the guidance
of the calculated applicable settings. Above experiments
demonstrate that the modeling algorithm is effective for both
rotation and translation motions. Given that the motion within
the imaging plane of spiking cameras can be decomposed into
translation and rotation, we hence conclude that the proposed
method is valid for different motion scenarios.
• Applications: Exploiting the modeling algorithm, we can
determine whether the camera can work properly in a specific
case. In turn, given an application scenario, we can utilize this
algorithm to get applicable settings for the camera to work
properly. Furthermore, we elaborate three scenarios (with
different brightness intensity, camera lens, and distance) and
calculate the corresponding maximum detectable speed of
moving targets, as recorded in Tab. 3. The first scenario is
the sunny noonday with sufficient sunshine that brightness
intensity exceeds the saturated state Is (12000 lx). Tab. 3
(a) shows that, spiking cameras have a strong capability of
detecting high-speed moving objects, and thus can be applied
to aeroplanes or trains. The second scenario is the under-
saturated condition of brightness, such as morning or cloudy
weather. Tab. 3 (b) shows that, the upper bound of maximum
detectable speed decreases, but the camera still remains the
capability of detecting moving cars or motorbikes, thus can
be used in autonomous driving. Tab. 3 (c) indicates that, the
high-speed detecting capability decreases a lot in dark light
conditions such as nightfall.

Table 3. The detection capability of the spiking camera [18]
for high-speed moving objects under different scenarios.

(a) Brightness condition of saturated state
Brightness Focal Length Object-Camera Distance (D/m)

(I/lx) (F/mm) D1=1 D2=10 D3=20 D4=30
F = 50 16 m/s 160 m/s 320 m/s 480 m/s

I ≥ 12000 F = 25 32 m/s 320 m/s 640 m/s 960 m/s
(n = 1) F = 16 50 m/s 500 m/s 1000 m/s 1500 m/s

(b) Brightness condition of under-saturation
Brightness Focal Length Object-Camera Distance (D/m)

(I/lx) (F/mm) D1=1 D2=15 D3=25 D4=50
F = 50 8 m/s 120 m/s 200 m/s 400 m/s

I = 6000 F = 25 16 m/s 240 m/s 400 m/s 800 m/s
(n = 2) F = 16 25 m/s 375 m/s 625 m/s 1250 m/s

(c) Brightness condition of dark
Brightness Focal Length Object-Camera Distance (D/m)

(I/lx) (F/mm) D1=1 D2=5 D3=10 D4=15
F = 50 2.6 m/s 13.3 m/s 26.6 m/s 40 m/s

I = 2000 F = 25 5.3 m/s 26.6 m/s 53.3 m/s 80 m/s
(n = 6) F = 16 8.3 m/s 41.6 m/s 83.3 m/s 125 m/s

∗ The speeds recorded in the tables represent the maximum detectable speed
under the conditions with I , D, and F .

5. CONCLUSION
The bio-inspired sensing principle enables neuromorphic
cameras advantageous in high-speed applications. In recent
years, such cameras have been widely used in drones, robots,
autonomous cars, etc. However, there are few attempts try-
ing to investigate the detection capability of spiking cameras
for high-speed targets. We analyze the correlation between
spike signals and scene radiance, and put forward the model-
ing algorithm. We believe that the proposed straightforward
approach has the potential to ignite more efforts on neuro-
morphic cameras, as well as broader applications.
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